Highly conserved Methionine Adenosyltransferase (MAT) isoenzymes
ثبت نشده
چکیده
It has been shown that changes of intracellular levels of S-adenosylmethionine (SAM) are related to the well beings of cells and organisms. The fluctuation of SAM level is cause by imbalance between SAM synthesis and metabolic pathways (methylation, transsulfuration and aminiopropylation) or degradation. S-adenosylmethionine biosynthesis is strictly and solely dependent on the activity of Methionine Adenosyltransferase (MAT, E.C.2.5.1.6), also known as S-adenosylmethionine synthetase. The methionine adenosyltransferase is encoded by two genes, MAT1A and MAT2A, encode for two homologous MAT catalytic subunits, α1 and α2. MAT1A is expressed in normal liver, and it encodes the α1 subunit found in two native MAT isozymes, which are either a dimer (MAT III) or tetramer (MAT I) of this single subunit. MAT2A encodes for a catalytic subunit (α2) found in a native MAT isozyme (MAT II), which is associated with a regulatory subunit (β) in encoded by MATA2B gene. MAT1A is expressed mostly in the adult normal hepatocytes, whereas MAT2A is widely distributed, of which mainly investigated are among highly proliferating liver cells, such as fetal liver and liver cancer cells. Except for parasites that rely on host for living, cells from all organisms have methionine adenyltransferase. MAT genes have been found to be exceptionally conserved throughout evolution.
منابع مشابه
Expanded phylogenies of canonical and non-canonical types of methionine adenosyltransferase reveal a complex history of these gene families in eukaryotes.
Most eukaryotes possess the highly-conserved enzyme methionine adenosyltransferase (MAT) that produces S-adenosyl-l-methionine, a molecule essential to a variety of cellular processes. However, a recent study revealed that genomes of a very few eukaryote lineages encode a highly divergent type of MAT (called MATX), instead of the canonical MAT enzyme. Since MATX-containing eukaryotes are phylog...
متن کاملThe Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases
Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detec...
متن کاملInsight into S-adenosylmethionine biosynthesis from the crystal structures of the human methionine adenosyltransferase catalytic and regulatory subunits
MAT (methionine adenosyltransferase) utilizes L-methionine and ATP to form SAM (S-adenosylmethionine), the principal methyl donor in biological methylation. Mammals encode a liver-specific isoenzyme, MAT1A, that is genetically linked with an inborn metabolic disorder of hypermethioninaemia, as well as a ubiquitously expressed isoenzyme, MAT2A, whose enzymatic activity is regulated by an associa...
متن کاملImmunoassays of Methionine Adenosyltransferase Activity, S- Adenosylmethionine and Implications for Proliferation and Carcinogenesis
To understand how S-adenosylmethionine (SAM) concentrations fluctuate in normal and cancerous cells, particularly normal and cancerous liver cells, we have developed a novel real-time immunoassay to simultaneously measure methionine adenosyltransferase (MAT) activity and SAM levels. This method integrates the MAT-catalyzed reaction of L-Met and ATP to produce SAM and a highly sensitive immunoas...
متن کاملInteraction of liver methionine adenosyltransferase with hydroxyl radical.
Liver methionine adenosyltransferase (MAT) plays a critical role in the metabolism of methionine converting this amino acid, in the presence of ATP, into S-adenosylmethionine. Here we report that hydrogen peroxide (H2O2), via generation of hydroxyl radical, inactivates liver MAT by reversibly and covalently oxidizing an enzyme site. In vitro studies using pure liver recombinant enzyme and mutan...
متن کامل